Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38636591

RESUMO

Evidence is mounting that climate change is having a significant impact on exacerbations of rhinitis. Concomitantly, the prevalence of allergic rhinitis is increasing at an accelerated rate. We herein explore the impact of carbon dioxide, barometric pressure and humidity changes, anthropogenic pollutants, on aeroallergens and rhinitis hypersensitivity. Important immune mechanisms underlying the climate-driven effects on rhinitis are discussed. Also, climate change is shifting ecological zones and seasons, increasing weather extremes, and altering regional atmospheric and environmental conditions. The direct impact of these factors on promoting allergic and nonallergic rhinitis are reviewed.

2.
Sci Total Environ ; : 172643, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649049

RESUMO

Particulate inorganic nitrogen aerosols (PIN) significantly influence air pollution and pose health risks worldwide. Despite extensive observations on ammonium (pNH4+) and nitrate (pNO3-) aerosols in various regions, their key sources and mechanisms in the Tibetan Plateau remain poorly understood. To bridge this gap, this study conducted a sampling campaign in Lhasa, the Tibetan Plateau's largest city, with a focus on analyzing the multiple isotopic signatures (δ15N, ∆17O). These isotopes were integrated into a Bayesian mixing model to quantify the source contributions and oxidation pathways for pNH4+ and pNO3-. Our results showed that traffic was the largest contributor to pNH4+ (31.8 %), followed by livestock (25.4 %), waste (21.8 %), and fertilizer (21.0 %), underscoring the impact of vehicular emissions on urban NH3 levels in Lhasa. For pNO3-, coal combustion emerged as the largest contributor (27.3 %), succeeded by biomass burning (26.3 %), traffic emission (25.3 %), and soil emission (21.1 %). In addition, the ∆17O-based model indicated a dominant role of NO2 + OH (52.9 %) in pNO3- production in Lhasa, which is similar to previous observations. However, it should be noted that the NO3 + volatile organic component (VOC) contributed up to 18.5 % to pNO3- production, which is four times higher than the Tibetan Plateau's background regions. Taken together, the multidimensional isotope analysis performed in this study elucidates the pronounced influence of anthropogenic activities on PIN in the atmospheric environment of Lhasa.

3.
J Environ Manage ; 355: 120442, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442656

RESUMO

The presence of trace elements in water for domestic supply or irrigation could pose a significant toxic risk for health, due to direct consumption or bioaccumulation through the ingestion of vegetables irrigated with this water. This paper studies the presence of 41 trace elements plus nitrate and bromate in groundwater, using a multivariate statistical tool based on Principal Component Analysis and a geostatistical Kriging method to map the results. Principal Component Analysis revealed 11 significant principal components, which account for 82% and 81% of the total variance (information) respectively for the two dates analysed. Ordinary Kriging was applied to draw maps of the trace elements and PC scores. This research breaks new ground in terms of the large number of parameters used and in terms of the analysis of spatiotemporal variations in these parameters. The results obtained indicate that PC1 represents the natural quality of the aquifer (geogenic) and that there is little change in the average PC1 value between the two dates studied (June near the peak recharge point and November at the end of summer). Agriculture is the human activity that causes the greatest variations in the quality of the groundwater due to the use of fertilizers and due to watering crops with wastewater (PC7_J and PC5_N, June and November, respectively). Other elements of industrial origin, which are dangerous for human health, such as Pb, Cu and Cd, are grouped together in other principal components. The results show that the decline, or even complete absence, of natural recharge during the summer months leads to an increase in the TEs produced by human activity. This indicates that a temporary reduction in the natural recharge could worsen the quality of water resources. Based on the interpretation of the estimated maps, a synthetic map was created to show the spatial distribution of the areas affected by geogenic and anthropogenic factors. Studies with a global approach like this one are necessary in that the possible sources of pollution that could alter the quality of the groundwater and the amount of trace elements and other potentially harmful substances could increase as time goes by. The main advantage of the methodology proposed here is that it reduces the number of parameters, so simplifying the results. This makes it easier to interpret the results and manage the quality of the water.


Assuntos
Água Subterrânea , Oligoelementos , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Oligoelementos/análise , Espanha , Poluentes Químicos da Água/análise , Água
4.
Vet Med Sci ; 10(2): e31386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456337

RESUMO

INTRODUCTION: Spinal deformities, including kyphoscoliosis, have been consistently documented in cetaceans. However, the majority of reported cases of kyphoscoliosis in cetaceans pertain to bottlenose dolphins, with limited information on its occurrence in narrow-ridged finless porpoise (NFP) (Neophocaena asiaeorientalis). MATERIALS AND METHODS: In November 2021, two deceased NFPs were discovered stranded on the shores of the Republic of Korea. As part of the pioneer stranded cetacean imaging programme in the Republic of Korea, both carcasses underwent post-mortem computed tomography (PMCT), revealing congenital and degenerative traumatic kyphoscoliosis, respectively. RESULTS: Although kyphoscoliosis may not have directly caused the demise of these individuals, it is hypothesized that the reduced spinal range of motion and mobility associated with kyphoscoliosis may have contributed to their deaths. CONCLUSION: This case report presents the first documented cases of kyphoscoliosis in two NFPs stranded in Korean waters, utilizing PMCT as an efficient methodology for assessing skeletal abnormalities in cetaceans.


Assuntos
Toninhas , Animais , 60692/veterinária , República da Coreia
5.
Sci Total Environ ; 917: 170336, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280594

RESUMO

Urbanization is an important driver of global change associated with a set of environmental modifications that affect the introduction and distribution of invasive non-native species (species with populations transported by humans beyond their natural biogeographic range that established and are spreading in their introduced range; hereafter, invasive species). These species are recognized as a cause of large ecological and economic losses. Nevertheless, the economic impacts of these species in urban areas are still poorly understood. Here we present a synthesis of the reported economic costs of invasive species in urban areas using the global InvaCost database, and demonstrate that costs are likely underestimated. Sixty-one invasive species have been reported to cause a cumulative cost of US$ 326.7 billion in urban areas between 1965 and 2021 globally (average annual cost of US$ 5.7 billion). Class Insecta was responsible for >99 % of reported costs (US$ 324.4 billion), followed by Aves (US$ 1.4 billion), and Magnoliopsida (US$ 494 million). The reported costs were highly uneven with the sum of the five costliest species representing 80 % of reported costs. Most reported costs were a result of damage (77.3 %), principally impacting public and social welfare (77.9 %) and authorities-stakeholders (20.7 %), and were almost entirely in terrestrial environments (99.9 %). We found costs reported for 24 countries. Yet, there are 73 additional countries with no reported costs, but with occurrences of invasive species that have reported costs in other countries. Although covering a relatively small area of the Earth's surface, urban areas represent about 15 % of the total reported costs attributed to invasive species. These results highlight the conservative nature of the estimates and impacts, revealing important biases present in the evaluation and publication of reported data on costs. We emphasize the urgent need for more focused assessments of invasive species' economic impacts in urban areas.


Assuntos
Insetos , Espécies Introduzidas , Humanos , Animais , Urbanização , Ecossistema
6.
Otolaryngol Clin North Am ; 57(2): 309-317, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923592

RESUMO

There is mounting evidence that climate change is having a significant influence on exacerbations of airway disease. We herein explore the physical factors of carbon dioxide, temperature increases, and humidity on intensifying allergen and fungal growth, and worsening air quality. The direct influence of these factors on promoting allergic rhinitis, chronic rhinosinusitis, and allergic fungal rhinosinusitis is reviewed.


Assuntos
Rinite Alérgica , Sinusite , Humanos , Mudança Climática , Nariz , Alérgenos
7.
Mar Pollut Bull ; 196: 115580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801799

RESUMO

The bacterial community plays an important role in biogeochemical cycles in marine sediment. However, little is known about the vertical profiles and co-occurrence patterns of bacterial community in sediment cores from the marine environment. In this study, five sediment cores were taken from a subtropical bay in China, heavily impacted by anthropogenic activities. The bacterial composition in sediment cores was investigated by using high-throughput sequencing of the 16S rRNA gene. A principal coordinates analysis and an adonis analysis of the operational taxonomic unit (OTU) compositions showed that spatial variation, rather than vertical variation, determined the bacterial structure in sediment cores. The bacterial complexity varied greatly across the five sediment cores, and the rare taxa played an important role in supporting the stability of the bacterial network. This study revealed that sediment properties and anthropogenic activities may induce a shift in the bacterial composition in sediment cores of a subtropical bay.


Assuntos
Bactérias , Baías , Baías/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sedimentos Geológicos/química , China
8.
Sci Total Environ ; 904: 166715, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666338

RESUMO

Lakes on the Qinghai-Tibet Plateau (QTP) have been subject to multiple environmental pressures from rapid climate change and intensified human activity in recent decades. However, their ecological effects on the lake ecosystem remain largely unclear due to the lack of long-term monitoring data. This study presented the environmental and ecological changes of the lake Yamzhog Yumco (Southern QTP) over the past three decades based on multi-proxy analysis (geochemistry and sedaDNA) on a high-time resolution sediment core. The result showed that the lake exhibited a continuous eutrophication process from 2004 CE, which has accelerated since 2014 CE. The nutrient enrichment was mainly attributed to anthropogenic emissions from the catchment. The sedimentary ancient DNA (sedaDNA) metabarcoding data registered a sensitive response of aquatic communities to the additional nutrient supply. Eukaryotic algae and aquatic invertebrate communities exhibited similar temporal dynamics, characterized by the increase in eutrophic taxa and the decrease in oligotrophic taxa. Change points analysis suggested that lake ecosystems underwent a slight ecological shift in 2003 CE and an abrupt shift in 2012 CE driven by nutrient enrichment. Quantitative analysis revealed that nutrients and human activity accounted for 27.9 % and 21.7 % of the temporal variation in aquatic communities, whereas climate change only explained 6.9 % of the total variation. From a paleolimnological view, our study supported that regional human activity could distinctly alter the nutrient level and aquatic community structure of lake ecosystems in the QTP. Considering that anthropogenic disturbance will continuously increase, it is crucial to strengthen the field monitoring of the lakes on the plateau and make effective management measures to avoid irreversible ecological consequences.


Assuntos
Ecossistema , Lagos , Humanos , Tibet , Efeitos Antropogênicos , Eutrofização , China
9.
Am J Primatol ; 85(11): e23553, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37750250

RESUMO

A link between the abundance of species and their degree of ecological specialization has previously been suggested within the primate order. Many species of lemurs were only recently described and even basic ecological data are not yet available for them. We investigated the habitat use, abundance, and habitat characteristics of the critically endangered Microcebus gerpi and evaluated potential impacts of vegetation structure and human disturbances on variations in its abundance. We determined abundance by systematic nocturnal surveys along 13 transects that were also used for characterizing the vegetation structure in seven study sites that were widely distributed within its range. Although M. gerpi occurred in all studied lowland rainforest and littoral forest fragments in central eastern Madagascar and therefore has a higher ecological plasticity and wider distribution than previously thought, its actual Area of Occupancy is very small (339.78 km2 ) due to an extreme degree of habitat fragmentation throughout its range. M. gerpi occurred with a mean encounter rate of 3.04 individuals/km but abundance varied substantially between sites (0.75-4.5 individuals/km). Statistical modeling revealed that the cover of small- to medium-sized trees had a positive impact on the abundance of M. gerpi, whereas a composite disturbance score (CDS), formed on the basis of information on the prominence of fires, cattle, charcoal production and wood extraction inside and around the forest, had a negative impact on abundance. These results suggest that M. gerpi is slightly less threatened than expected because of its larger geographic range, but also that it responds negatively to human disturbances. These findings raise strong conservation concerns and question the long-term viability of the remaining small and isolated populations of this arboreal solitary forager.

10.
J Environ Manage ; 346: 119055, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741196

RESUMO

Anthropogenic activities alter the underlying surface conditions and arrangements of landscape features in a drainage basin, interfering with the pollutant (e.g., dissolved nitrogen, phosphorus) transport network configuration and altering the hydrological response. Assessing the impact of anthropogenic activities on hydrological connectivity for natural-artificial catchment is critical to understand the hydrological-driven ecosystem processes, services and biodiversity. However, quantifying this impact at catchment scale remains challenging. In this study, a new framework was proposed to quantify the impact of anthropogenic activities on hydrological connectivity combined with graph theory and network analysis. This framework was exemplified in a natural-artificial catchment of the Yangtze River basin of China. Based on remote sensing and field-investigated data, three transport networks were constructed, including natural transport network (N1), ditch-road transport network (N2), and terrace-dominated transport network (N3), which reflected the different human intervention. The results showed that human intervention improved the connectivity of the nodes and enhanced the complexity of the catchment transport network structure. Anthropogenic activities significantly decreased the hydrological structural connectivity of the catchment. In particular, compared with the N1 network, the critical nodes for hydrological connectivity which were judged by connectivity indexes were reduced by 92.94% and 95.29% in the N2 and N3 network, respectively. Furthermore, the ditch-road construction had a greater impact than terraces in decreasing hydrological structural connectivity at catchment scale. This framework has proven effective in quantifying the hydrological connectivity analysis under different human intervention at the catchment scale and facilitates the improvement of catchment management strategies.

11.
Mar Pollut Bull ; 194(Pt B): 115455, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37651887

RESUMO

The study aims to understand the metal toxicity through the relationship between bioavailability in sediments and bioaccumulation in edible bivalves in an estuary subjected to extensive sand mining. The higher deposition of total Fe, Mn, Ni and Zn in the middle region (core M) was ascribed to estuarine processes and proximity to anthropogenic sources. EF revealed moderate to severe enrichment of Ni and Cu in sediments. Igeo showed moderate degree of pollution from Co, moderate to strong pollution from Ni and strong to extreme level of pollution from Cu. In core N, the average bioavailable concentration of Fe, Mn, Zn, Cu, Co and Ni was 1.76 %, 43.18 %, 59.14 %, 62.11 %, 60.42 % and 27.33 % respectively. The average bioavailable concentration of Fe (61.23 %), Mn (56.87 %), Cu (67.98 %), Co (69.77 %) and Ni (40.99 %) was higher in the core M as compared to core N except for Zn (56.98 %). The significant (>25.00 %) proportion of metals in bioavailable fractions in cores N and M construed their non-natural sources. Metal speciation study indicated bioavailability to fauna that likely to enhance by extensive sand mining. The level of Fe, Mn, Zn, Cu and Ni in Saccostrea cucullate, Meretrix casta and Villorita cyprinoides revealed toxicity to bivalves and probably to humans.


Assuntos
Bivalves , Areia , Humanos , Animais , Bioacumulação , Estuários , Metais , Índia
12.
Sci Total Environ ; 898: 165632, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467976

RESUMO

Anthropogenic and natural sources contribute to chemical mixtures in air, water, and soil, posing potential risks to the environment and human health. To understand the interplay between element profiles in the human body, geographical location, and associated economic activities, we carried out an observational analytic cross-sectional study. The study recruited 199 participants from three municipalities, two of which had gold-mining as their primary economic activity, while the other was dedicated to agricultural and other local activities not related to mining. The concentrations of a total of 30 elements in human hair samples and 21 elements in environmental soil samples were measured using various spectrometry techniques. Unsupervised clustering analysis using Self-Organizing Maps was applied to human hair samples to analyze element concentrations. Distinct clusters of individuals were identified based on their hair element profiles, which were mapped to geographical location and economic activities. While higher levels of heavy metals (Ag, As, Hg, and Pb) were observed in individuals engaged in mining activities in certain clusters, individuals in agricultural areas show higher concentrations of elements found in pesticides (Ba and Sr). However, the elemental composition of hair is influenced not only by the anthropogenic activities but also by the inherent geological context where people live. Our findings highlight the significance of accounting for environmental factors when evaluating human health risks, as the intricate mixture of elements can yield valuable insights for targeted health interventions.

13.
J Hazard Mater ; 458: 132050, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37459760

RESUMO

In this study, based on the assessment of soil heavy metals (HMs) pollution using relevant indices, a comprehensive approach combined network environ analysis (NEA), human health risk assessment (HHRA) method and positive definite matrix factor (PMF) model to quantify the risks among ecological communities in a special environment around mining area in northwest Yunnan, calculated the risk to human health caused by HMs in soil, and analyzed the pollution sources of HMs. The integrated risks for soil microorganisms, vegetations, herbivores, and carnivores were 2.336, 0.876, 0.114, and 0.082, respectively, indicating that soil microorganisms were the largest risk receptors. The total hazard indexes (HIT) for males, females, and children were 0.542, 0.591, and 1.970, respectively, revealing a relatively high and non-negligible non-carcinogenic risks (NCR) for children. The total cancer risks (TCR) for both females and children exceeded 1.00E-04, indicating that soil HMs posed carcinogenic risks (CR) to them. Comparatively, Pb was the high-risk metal, accounting for 53.76%, 57.90%, and 68.09% of HIT in males, females, and children, respectively. PMF analysis yielded five sources of pollution, F1 (industry), F2 (agriculture), F3 (domesticity), F4 (nature), and F5 (traffic).


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Humanos , Solo , China , Monitoramento Ambiental , Poluentes do Solo/análise , Medição de Risco , Metais Pesados/análise , Carcinógenos
14.
Heliyon ; 9(6): e16984, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484308

RESUMO

Wetlands are one of the most important ecosystems as habitats for many animal and plant species and are crucial for disaster mitigation, improving environmental quality, storing carbon, and responding to climate change. However, these sensitive ecosystems have been heavily affected by anthropogenic activities, including aquaculture. In this study, we used multitemporal satellite imagery integrated with a verified field survey method to map the coverage of the wetland ecosystem in the Dong Rui commune, Tien Yen district, Quang Ninh Province, Vietnam, five times for four periods from 1975 to 2022, with high accuracy (overall accuracy = 92.3%, Kappa = 0.91). The results showed that from 1975 to 2000, the area of mangrove forests declined sharply (by nearly 2,000 ha), mainly due to policies of development and conversion of land use. From 2000 to 2022, the mangrove forest area was gradually restored, while the area under aquaculture shrank. Anthropogenic impacts, especially the effects of local economic development, and conservation and developmental policies, are the main causes of continuous change in each short period. Our study demonstrates satellite imagery as an effective tool for assessing wetland ecosystem area fluctuations and assessing the extent of human impacts on this natural ecosystem. Our findings can serve as a basis for planning, conservation strategies, and sustainable development of wetland ecosystems and for improving the associated livelihoods of the communities.

15.
Heliyon ; 9(6): e16694, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37292263

RESUMO

Nonlinear contributions from climate change and anthropogenic activity to the Normalized Difference Vegetation Index (NDVI) are analyzed to better understand the mechanisms underlying the nonlinear response of vegetation growth. In this study, it was hypothesized that NDVI dynamics on a nonlinear trajectory could track fluctuations of climate change and anthropogenic activity. Contributions from climate change and anthropogenic activity to NDVI were quantified using a locally weighted regression approach based on monthly timescale datasets. The findings showed that: 1) Vegetation cover fluctuated and increased in 81% of regions in China from 2000 to 2019. 2) The average predicted nonlinear contribution (APNC) of anthropogenic activity to NDVI was positive in China. The temperature APNC was positive in most of China but negative in Yunnan, where high temperatures and asynchronous temporal changes in temperature and NDVI were observed. The precipitation APNC was positive in the north of the Yangtze River, where precipitation is insufficient; but negative in South China, where precipitation is plentiful. Anthropogenic activity had the highest magnitude among the three nonlinear contributions, followed by temperature and precipitation. 3) The regions with contribution rates of anthropogenic activity greater than 80% were mainly distributed in the central Loess Plateau, North China Plain, and South China, while the areas with contribution rates of climate change greater than 80% were mainly concentrated in the northeastern QTP, Yunnan, and Northeast China. 4) The high temperature, drought, and asynchronous temporal changes in temperature, precipitation, and NDVI caused the negative average of changing trends in the predicted nonlinear contribution (PNC) of climate change to NDVI. Deforestation, land cover change, and grazing/fencing led to the negative average of changing trends in PNC from anthropogenic activity. These findings deepen our understanding of the mechanisms underlying the nonlinear responses of vegetation growth to climate change and anthropogenic activity.

16.
Chemosphere ; 332: 138806, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37137398

RESUMO

Water pollution is a worldwide concern that has growing severe in developed and developing nations. Increasing groundwater pollution threatening both the physical and environmental health of billions of people as well as economic progress. Consequently, hydrogeochemistry, water quality and potential health risk assessment is crucial for water resource management. The study area comprises Jamuna Floodplain (Holocene deposit) area in the west and the Madhupur tract (Pleistocene deposit) area in the eastern part. Total 39 groundwater samples were collected from the study area and were analyzed for physicochemical parameters, hydrogeochemical, trace metals, and isotopic composition. The water types are mainly Ca-HCO3- to Na-HCO3- types. The isotopic compositions (δ18O‰ and δ2H‰) analysis traces the recent recharge in Floodplain area from rainwater and no recent recharge in Madhupur tract. The concentration of NO3-, As, Cr, Ni, Pb, Fe, and Mn in shallow and intermediate aquifer at the Floodplain area exceed the WHO-2011 permissible limit and is lower at deep Holocene and Madhupur tract aquifer. The integrated weighted water quality index (IWQI) exposed groundwater from shallow and intermediate aquifer are unsuitable for drinking and deep Holocene aquifer and Madhupur tract are suitable for drinking purposes. PCA analysis confirmed that anthropogenic activity is dominant in shallow and intermediate aquifers. The non-carcinogenic and carcinogenic risk for adults and children is due to oral and dermal exposure. The non-carcinogenic risk evaluation revealed that the mean hazard index (HI) values range from 0.009742 to 16.37 for adults and 0.0124-20.83 for children, respectively, and most groundwater samples from shallow and intermediate aquifers exceed the permissible limit (HI>1). The carcinogenic risk ranges from 2.71 × 10-6-0.014 for adults and 3.44 × 10-6-0.017 for children via oral consumption and 7.09 × 10-11-1.18 × 10-6 for adults and 1.25 × 10-10-2.09 × 10-6 for children via dermal exposure. Spatial distribution shows the presence of trace metal and associated health risk is high in shallow and intermediate aquifer (Holocene) than in the deep (Holocene) Madhupur tract (Pleistocene). The study implies that effective water management will ensure safe drinking water for the future generation of people.


Assuntos
Água Subterrânea , Oligoelementos , Poluentes Químicos da Água , Adulto , Criança , Humanos , Monitoramento Ambiental , Bangladesh , Poluentes Químicos da Água/análise , Água Subterrânea/química , Qualidade da Água , Oligoelementos/análise
17.
Int J Antimicrob Agents ; 62(2): 106848, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37201798

RESUMO

Antimicrobial resistance (AMR) is one of the most pressing public health concerns; therefore, it is imperative to advance our understanding of the factors influencing AMR from Global and One Health perspectives. To address this, Aeromonas populations were identified using 16S rRNA gene libraries among human, agriculture, aquaculture, drinking water, surface water, and wastewater samples, supporting its use as indicator bacteria to study AMR. A systematic review and meta-analysis was then performed from Global and One Health perspectives, including data from 221 articles describing 15 891 isolates from 57 countries. The interconnectedness of different environments was evident as minimal differences were identified between sectors among 21 different antimicrobials. However, resistance to critically important antibiotics (aztreonam and cefepime) was significantly higher among wastewater populations compared with clinical isolates. Additionally, isolates from untreated wastewater typically exhibited increased AMR compared with those from treated wastewater. Furthermore, aquaculture was associated with increased AMR to ciprofloxacin and tetracycline compared with wild-caught seafood. Using the World Health Organization AWaRe classifications, countries with lower consumption of "Access" compared to "Watch" drugs from 2000 to 2015 demonstrated higher AMR levels. The current analysis revealed negative correlations between AMR and anthropogenic factors, such as environmental performance indices and socioeconomic standing. Environmental health and sanitation were two of the environmental factors most strongly correlated with AMR. The current analysis highlights the negative impacts of "Watch" drug overconsumption, anthropogenic activity, absence of wastewater infrastructure, and aquaculture on AMR, thus stressing the need for proper infrastructure and global regulations to combat this growing problem.


Assuntos
Aeromonas , Anti-Infecciosos , Saúde Única , Humanos , Aeromonas/genética , Águas Residuárias , Saúde Global , RNA Ribossômico 16S , Farmacorresistência Bacteriana , Antibacterianos/farmacologia
18.
J Environ Manage ; 342: 118077, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209643

RESUMO

One critical question for water security and sustainable development is how water quality responses to the changes in natural factors and human activities, especially in light of the expected exacerbation in water scarcity. Although machine learning models have shown noticeable advances in water quality attribution analysis, they have limited interpretability in explaining the feature importance with theoretical guarantees of consistency. To fill this gap, this study built a modelling framework that employed the inverse distance weighting method and the extreme gradient boosting model to simulate the water quality at grid scale, and adapted the Shapley additive explanation to interpret the contributions of the drivers to water quality over the Yangtze River basin. Different from previous studies, we calculated the contribution of features to water quality at each grid within river basin and aggregated the contribution from all the grids as the feature importance. Our analysis revealed dramatic changes in response magnitudes of water quality to drivers within river basin. Air temperature had high importance in the variability of key water quality indicators (i.e. ammonia-nitrogen, total phosphorus, and chemical oxygen demand), and dominated the changes of water quality in Yangtze River basin, especially in the upstream region. In the mid- and downstream regions, water quality was mainly affected by human activities. This study provided a modelling framework applicable to robustly identify the feature importance by explaining the contribution of features to water quality at each grid.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Humanos , Efeitos Antropogênicos , Rios , Análise da Demanda Biológica de Oxigênio
19.
Mar Pollut Bull ; 188: 114726, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36860019

RESUMO

The booming coastal zone economy poses increasing anthropogenic threats to marine life and habitats. Using the endangered living fossil horseshoe crab (HSC) as an example, we quantified the intensity of various anthropogenic pressures along the coast of Hainan Island, China, and for the first time assessed their impact on the distribution of juvenile HSCs through a field survey, remote sensing, spatial geographic modeling, and machine learning methods. The results indicate that the Danzhou Bay needs to be protected as a priority based on species and anthropogenic pressure information. Aquaculture and port activities dramatically impact the density of HSCs and therefore be managed priority. Finally, a threshold effect between total, coastal residential, and beach pressure and the density of juvenile HSCs were detected, which indicates the need for a balance between development and conservation as well as the designation of suitable sites for the construction of marine protected areas.


Assuntos
Caranguejos Ferradura , Atividades Humanas , Humanos , Animais , China , Efeitos Antropogênicos , Aquicultura
20.
Environ Sci Pollut Res Int ; 30(16): 47182-47208, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36732457

RESUMO

Soil pollution represents a threat to soil biodiversity and to soil and human health. However, many ecotoxicological issues, such as the impact of heavy metal pollution on the soil mite community and its spatial distribution in areas with complex environmental factors, are not fully understood. Here, an investigation was conducted in an arable area (about 11 km2) enclosed by surrounding mountains. The study area was contaminated with potentially toxic metals derived from copper smelting that was functioning for over 10 years. The area comprised four land use types: woodlands, dry fields, paddy fields, and wastelands, and was divided into 141 study sites each with an area of 6.25 ha. The soil metal (Cu, Zn, Pb, and Cd) contents, pH, and organic matter were determined and their distributions were established. Furthermore, soil mite (Acari) community properties (species richness, individual abundance, and Shannon-Wiener diversity index) were determined, and the distributions of total species number and abundance were ascertained. Soil metal pollution strongly reduced soil mite community, but the effects depended on mite groups or species and their sensitivity to different metals as well as land use types. CANOCO analysis revealed that the order Oribatida was more highly correlated with soil metal contents, whereas the other three orders responded to soil metal contents depending on land use types, mite properties, or metals. SADIE method indicated that the coordinate relationship between mite species number and metal concentration was more negative (4-25% of the study sites) than positive (4-12%). The metal pollution levels in the soil were evaluated by single and integrated pollution and ecological risk indices.


Assuntos
Metais Pesados , Ácaros , Poluentes do Solo , Animais , Humanos , Solo/química , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , Poluição Ambiental/análise , China , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...